南京航空航天大学

第1页 (共4页)

2012~2013 学年 《 Matrix Theory 》期中考试试题

考试日期: 2012年11月 试卷类型: 试卷代号:

学院			学号	2号 姓名							
题号	1	2	3	4	5	6	7	8	9	10	总分
得分											

参考答案

Part I (必做题, 70分)

#1. For the given matrix

$$A = \begin{pmatrix} 1 & 3 & -2 & 1 \\ 2 & 1 & 3 & 2 \\ 3 & 4 & 5 & 6 \end{pmatrix}$$

- (1) find the reduced row echelon form (简化行阶梯形) of A;
- (2) find a basis for the row space of A;
- (3) find a basis for the for the column space of A;
- (4) find a basis for the nullspace of A.

Solution:

$$(1) \quad A = \begin{pmatrix} 1 & 3 & -2 & 1 \\ 2 & 1 & 3 & 2 \\ 3 & 4 & 5 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -2 & 1 \\ 0 & -5 & 7 & 0 \\ 0 & 0 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 0 & 5/2 \\ 0 & 1 & 0 & 21/20 \\ 0 & 0 & 1 & 3/4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -13/20 \\ 0 & 1 & 0 & 21/20 \\ 0 & 0 & 1 & 3/4 \end{pmatrix} = U$$

- (2) (1,0,0,-13/20), (0,1,0,21/20), (0,0,1,3/4) form a basis for the row space of A, since row elementary operations do not change the row space of A.
- (3) The 1^{st} , 2^{nd} , and 3^{rd} column vectors of U are linearly independent. The 4^{th} column vector is a linear combination of the first three column vectors. Hence, $(1,2,3)^T$, $(3,1,4)^T$, $(-2,3,5)^T$ form a basis for the column space of A.
- (4) Solving the system $A\mathbf{x} = \mathbf{0}$, we obtain a basis $(13, -21, -15, 20)^T$ for the nullspace of A.

#2. Let $\mathbf{e}_1, \mathbf{e}_2$ be a basis for \mathbf{R}^2 and $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ be a basis for \mathbf{R}^3 ,

where
$$(\mathbf{e}_1, \mathbf{e}_2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$L(\mathbf{x}) = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + (x_1 + x_2) \mathbf{b}_3.$$

Find the matrix A representing L with respect to the bases $[\mathbf{e}_1, \mathbf{e}_2]$ and $[\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3]$. Solution:

$$L(\mathbf{e}_1) = \mathbf{b}_1 + \mathbf{b}_3$$

$$L(\mathbf{e}_2) = \mathbf{b}_2 + \mathbf{b}_3$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

#3. Let S be the two dimensional subspace of \mathbb{R}^3 spanned by

$$\mathbf{u}_1 = (1,0,2)^T$$
 and $\mathbf{u}_2 = (0,1,-2)^T$

Find a basis for S^{\perp} and determine the projection matrix P that projects vectors in \mathbb{R}^3 onto \mathbb{S}^{\perp} .

Solution: $\mathbf{x} \in \mathbf{S}^{\perp}$ if and only if $\mathbf{x} \perp \mathbf{u}_1$ and $\mathbf{x} \perp \mathbf{u}_2$. That is

$$x_1 + 2x_3 = 0$$

$$x_2 - 2x_3 = 0$$

 $\mathbf{S}^{\perp} = \operatorname{span}\{(-2,2,1)^T\}$. An orthonormal basis for \mathbf{S}^{\perp} is $(-2/3,2/3,1/3)^T$

The projection matrix is

$$\begin{pmatrix} -2/3 \\ 2/3 \\ 1/3 \end{pmatrix} (-2/3, 2/3, 1/3) = \begin{pmatrix} 4/9 & -4/9 & -2/9 \\ -4/9 & 4/9 & 2/9 \\ -2/9 & 2/9 & 1/9 \end{pmatrix}$$

#4. For the given matrix A, find all possible values of the scalar β that make A diagonalizable or show that no such values exist.

$$A = \begin{pmatrix} 4 & 6 & -2 \\ -1 & -1 & 1 \\ 0 & 0 & \beta \end{pmatrix}$$

Solution: The eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = \beta$.

If $\beta \neq 1$ and $\beta \neq 2$, then A is diagonalizable since A has 3 distinct eigenvalues, and hence A has 3 independent eigenvectors.

If $\beta = 1$, then 2 is a single eigenvalue and 1 is a double eigenvalue of matrix A. For the double eigenvalue,

$$A-1 \cdot I = \begin{pmatrix} 3 & 6 & -2 \\ -1 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad N(A-1 \cdot I) = \text{span}\{(-2,1,0)^T\}, \text{ which is of dimension 1.}$$

Hence, in this case A is not diagonalizable since the geometric multiplicity of $\lambda_1 = 1$ is less than its algebraic multiplicity.

If $\beta = 2$, then 1 is a single eigenvalue and 2 is a double eigenvalue of matrix A. For this double eigenvalue,

$$A - 2 \cdot I = \begin{pmatrix} 2 & 6 & -2 \\ -1 & -3 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 $N(A - 2 \cdot I) = \text{span}\{(1,0,1)^T, (3,-1,0)^T\}$, which is of dimension 2.

Thus, in this case A is diagonalizable since for each eigenvalue of A, its algebraic multiplicity is the same as its geometric multiplicity.

In summary, A is diagonalizable if and only if $\beta \neq 1$.

Part II (选做题, 30 分)

请选择下列三题中的两题解答,并在所选的题号上划圈,否则按得分最低的两题计分.

#5. Let S be a subspace of \mathbb{R}^1 . Show that either $S = \{0\}$ or $S = \mathbb{R}^1$.

Proof If $S \neq \{0\}$, then there exists a nonzero element $(a) \in S$, where a is a nonzero real number. For any element $(x) \in \mathbb{R}^1$, $\frac{x}{a}$ is a real number. Thus, $\frac{x}{a}(a) = (x) \in S$ since S is closed under scalar multiplication. Thus, any element in \mathbb{R}^1 is also in S, and hence $S = \mathbb{R}^1$.

#6. If V_1, V_2, V_3 are subspaces of vector space V, show that $V_1 + V_2 + V_3$ is a direct sum if and only if

 $V_1 \cap (V_2 + V_3) = \{0\}$, $V_2 \cap (V_1 + V_3) = \{0\}$, and $V_3 \cap (V_1 + V_2) = \{0\}$. (注: 不可利用书中 36 页上的 Theorem 1.7.3)

Proof $V_1 + V_2 + V_3$ is a direct sum if each vector in the sum can be *uniquely* represented as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$, where $\mathbf{x}_i \in V_i$ (i = 1, 2, 3).

Suppose that $V_1 + V_2 + V_3$ is a direct sum. If $V_1 \cap (V_2 + V_3) \neq \{0\}$, then there is a nonzero element $\mathbf{u} \in V_1 \cap (V_2 + V_3)$.

u can be represented as $\mathbf{u} = \mathbf{u} + \mathbf{0} + \mathbf{0}$, where $\mathbf{u} \in \mathbf{V}_1$, and $\mathbf{0} \in \mathbf{V}_2$, $\mathbf{0} \in \mathbf{V}_3$.

And also, **u** can be represented as $\mathbf{u} = \mathbf{0} + \mathbf{x}_2 + \mathbf{x}_3$ since $\mathbf{u} \in \mathbf{V}_2 + \mathbf{V}_3$, where $\mathbf{0} \in \mathbf{V}_1$, $\mathbf{x}_2 \in \mathbf{V}_2$, $\mathbf{x}_3 \in \mathbf{V}_3$. Thus, **u** has two distinct representations. This is a contradiction. Thus, when $\mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$ is a direct sum, we must have $\mathbf{V}_1 \cap (\mathbf{V}_2 + \mathbf{V}_3) = \{\mathbf{0}\}$. Similarly, we can prove that $\mathbf{V}_2 \cap (\mathbf{V}_1 + \mathbf{V}_3) = \{\mathbf{0}\}$, and $\mathbf{V}_3 \cap (\mathbf{V}_1 + \mathbf{V}_2) = \{\mathbf{0}\}$.

Conversely, suppose that $\mathbf{V}_1 \cap (\mathbf{V}_2 + \mathbf{V}_3) = \{\mathbf{0}\}$, $\mathbf{V}_2 \cap (\mathbf{V}_1 + \mathbf{V}_3) = \{\mathbf{0}\}$, and $\mathbf{V}_3 \cap (\mathbf{V}_1 + \mathbf{V}_2) = \{\mathbf{0}\}$. If $\mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$ is not a direct sum, then there exists an element $\mathbf{u} \in \mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3$, such that $\mathbf{u} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$ and $\mathbf{u} = \mathbf{y}_1 + \mathbf{y}_2 + \mathbf{y}_3$, where $\mathbf{x}_i, \mathbf{y}_i \in \mathbf{V}_i$ (i = 1, 2, 3).

and there exist at least one integer $i \in \{1, 2, 3\}$ such that $\mathbf{x}_i \neq \mathbf{y}_i$. Without loss of generality, assume that i = 1.

#7. Let σ be a linear transformation on vector space **V** over the complex number field, and **S** be a σ -invariant subspace of **V**. Show that there exists a nonzero vector $\mathbf{u} \in \mathbf{S}$, such that $\sigma(\mathbf{u}) = \lambda \mathbf{u}$, where λ is a scalar. (For the definition of invariant subspace, see page 92 in the textbook.)

提示: 取**S**的一组基 $\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_k$,则 $\sigma(\mathbf{u}_1),\sigma(\mathbf{u}_2),\cdots,\sigma(\mathbf{u}_k)$ 都可由 $\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_k$ 的线性组合表示,

利用线性组合的系数矩阵.

Proof In formal multiplication, we can write

$$(\sigma(\mathbf{u}_1), \sigma(\mathbf{u}_2), \dots, \sigma(\mathbf{u}_k)) = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k)A$$

where A is a $k \times k$ matrix. Let λ be an eigenvalue of A, and **x** be an eigenvector such that $A\mathbf{x} = \lambda \mathbf{x}$, where $\mathbf{x} = (x_1, x_2, \dots, x_k)^T$

Let
$$\mathbf{u} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 + \cdots + x_k \mathbf{u}_k = (\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k) \mathbf{x}$$
, which is not zero.

Then
$$\sigma(\mathbf{u}) = x_1 \sigma(\mathbf{u}_1) + x_2 \sigma(\mathbf{u}_2) + \dots + x_k \sigma(\mathbf{u}_k) = (\sigma(\mathbf{u}_1), \sigma(\mathbf{u}_2), \dots, \sigma(\mathbf{u}_k)) \mathbf{x}$$

= $(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k) A \mathbf{x} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k) \lambda \mathbf{x} = \lambda (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k) \mathbf{x} = \lambda \mathbf{u}$