Derivatives

$$ f'(x) \triangleq \lim_{h\to 0} {f(x+h) - f(x) \over h} $$

$$ \begin{aligned} f'(x) &= \underbrace{\lim_{h\to 0}{f(x+h) - f(x) \over h}}{\text{forward difference}} \\ &= \underbrace{\lim{h\to 0}{f(x+h/2) - f(x-h/2) \over h}}{\text{central difference}} \\ &= \underbrace{\lim{h\to 0}{f(x) - f(x - h) \over h}}_{\text{backward difference}} \end{aligned} \tag{7.241} $$

Gradients

$$ {\partial f \over \partial x_i} = \lim_{h \to 0} {f(\bold{x} + h\bold{e}_i) - f(\bold{x}) \over h} $$

$$ \bold{g} = {\partial f \over \partial \bold{x}} = \nabla f = \left( \begin{matrix}{ {\partial f \over \partial x_1}} \\ \vdots \\ {\partial f \over \partial x_n} \end{matrix} \right) \tag{7.243} $$

$$ \bold{g}(\bold{x}^) \triangleq {\partial f \over \partial \bold{x}}|_{\bold{x}^} \tag{7.244} $$

Directional derivative

$$ D_\bold{v} f(\bold{x}) = \lim_{h \to 0} { f(\bold{x} + h\bold{v}) - f(\bold{x}) \over h} $$