<Original Paper Link>

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets



0. Abstract

<aside> ๐Ÿ’ก InfoGAN์€ ๊ธฐ์กด์˜ GAN์—์„œ ์ •๋ณด์ด๋ก ์ ์ธ ํ™•์žฅ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๋น„์ง€๋„ ๋ฐฉ์‹์œผ๋กœ disentangled representation (์ž ์žฌ ๊ณต๊ฐ„์—์„œ์˜ ๋ฒกํ„ฐ ์ด๋™์˜ ์˜๋ฏธ๋ฅผ ํŒŒ์•…)์„ ํ•™์Šตํ•˜๋„๋ก ํ•œ๋‹ค.

์ด๋Š” ์ž ์žฌ ๋ฒกํ„ฐ์˜ ๋ณ€์ˆ˜์™€ ์‹ค์ œ ์ƒ์„ฑ output์œผ๋กœ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€ ๊ฐ„์˜ ์ƒํ˜ธ์ •๋ณด๋Ÿ‰์„ ์ตœ๋Œ€ํ™” ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•œ๋‹ค. ์ƒํ˜ธ ์ •๋ณด๋Ÿ‰์„ ์ •ํ™•ํžˆ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์€ ์‚ฌํ›„(posterior) ํ™•๋ฅ  ๋•Œ๋ฌธ์— ์‰ฝ์ง€ ์•Š์œผ๋ฏ€๋กœ, ๋ณด์กฐ ๋ถ„ํฌ๋ฅผ ํ™œ์šฉํ•ด ๊ทผ์‚ฌํ•œ ๋’ค, ํ•˜ํ•œ์„ ์„ ์ •ํ•ด ์ด๋ฅผ ๋†’์ด๋Š” ๋ฐฉ์‹์œผ๋กœ ํ•œ๋‹ค.

์ด๋ฅผ ํ†ตํ•ด MNIST ๋ฐ์ดํ„ฐ์—์„œ ์ˆซ์ž ํด๋ž˜์Šค ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ํšŒ์ „, ๊ธ€์”จ ๋‘๊ป˜ ๋“ฑ์— ๋Œ€ํ•œ ๋ณ€ํ™˜ ๋ฒกํ„ฐ๋ฅผ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ๊ณ , SVHN, CelebA ๋ฐ์ดํ„ฐ์…‹์—์„œ๋„ ์ž ์žฌ ๊ณต๊ฐ„์— ๋Œ€ํ•œ ๋ฒกํ„ฐ๋ฅผ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ ๊ฐ€๋Šฅํ•œ ๊ฒƒ์„ ๋ณด์—ฌ, ํ˜„์žฌ ์ง€๋„ ํ•™์Šต ๋ฐฉ์‹ ๋Œ€๋น„ ๊ฒฝ์Ÿ๋ ฅ ์žˆ์Œ์„ ๋ณด์ž„.

</aside>

แ„‰แ…ณแ„แ…ณแ„…แ…ตแ†ซแ„‰แ…ฃแ†บ 2022-03-25 แ„‹แ…ฉแ„’แ…ฎ 6.19.14.png



1. Introduction

<aside> ๐Ÿ’ก .

์ด๋ฒˆ ๋…ผ๋ฌธ์—์„œ๋Š” GAN ๋„คํŠธ์›Œํฌ์— ์•ฝ๊ฐ„์˜ ์ˆ˜์ •์„ ํ†ตํ•ด ํ•™์Šต๋ชฉํ‘œ์— ํ•ด์„ ๊ฐ€๋Šฅํ•˜๊ณ  ์˜๋ฏธ์žˆ๋Š” ํ‘œํ˜„์„ ํ•™์Šตํ•˜๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ณด์—ฌ์คŒ. GAN์˜ ์ž ์žฌ ๋ฒกํ„ฐ์˜ ์ผ๋ถ€๋ถ„๊ณผ ์ด๋กœ ์ธํ•ด ์ถœ๋ ฅ๋œ ๊ฒฐ๊ณผ๋ฌผ์˜ ์ƒํ˜ธ ์ •๋ณด๋Ÿ‰์„ ์ตœ๋Œ€ํ™”.

โ†’ ์ƒํ˜ธ ์ •๋ณด๋Ÿ‰์„ ์ƒ์„ฑ ๋ชจ๋ธ์— ํฌํ•จํ•˜๋Š” ๊ฒƒ์ด disentagled representation์— ์žˆ์–ด ๋งค์šฐ ์˜๋ฏธ์žˆ์Œ์„ ์ œ์•ˆ.

infoGAN-2.png