(All of these answers are my own and my not be correct)
For each of the following statments, determine whether it is true or false. No proofs are required.
A subring of a commutative ring is commutative
True by definition
If $R,S$ are rings and there exists a ring homomorphism $f:R\to S$ which is not injective, then $R$ and $S$ are not isomorphic.
False, not necessarily. There can exist another ring homomorphism that is bijective. $R$ and $S$ can be isomorphic
Example:
$R\cong S=\Bbb Z \oplus \Bbb Z$
$f: \Z\oplus\Z \to \Z\oplus Z\\ f(a,b)=(a,a)$
The ring $\Z_2[x]$ is a PID
$F \text{ is a field}\implies F[x] \text{ is a PID}$
$\Z_2$ is a field $\implies \Z_2[x]$ is a PID
True, $p=2$ is prime so $\Z_2$ is prime
If $f(x) \in F[x]$ is a reducible polynomial over a field and $\deg (f)=3$ then $f(x)$ has a root in $F$
True, if $\deg f \leq 3,$ and $f$ has a root, then $f$ is reducible
Every polynomioal of degree $4$ over $\R$ is reducible
True: Possible degrees of polynomials is (1)(2)
Irreducibles over Reals have odd degree
Theorem: Irreducibles polynomials over reals have only degree 1 or 2
If $F$ is a field of cardinality $49$ and $x\in F$ satisfies $x^6=x,$ then $x=0$ or $x=1$
$|F|=49,\\ x^6=x\xRightarrow{?}x=0\text{ or } x=1$
$x\neq 0\implies x^5=1\implies \text{ord}_{F^x}(x) \mid 5$
$\text{ord}_{F^x}(x)\in \{\ 1,5\ \}$
Using Legrange theorem,
$|F^x|=49-1=48$
$\text{ord}_{F^x}(x)=1\implies x=1$
$|F^x|=|F|-1$
True statement but unrelated, do not get confused: $|\Z_n^x|\implies n$ is prime
True
Let $\Z_p \subseteq \mathbb{K}$ be a field extension. How many roots does the polynomial $x^{p^2}-x^p$ have in $K$?
$f(x)\in \Z_p[x]$
$f(x)^p=f(x^p)$
$(a+b)^p=a^p+b^p,$ if $\text{char}F=p$
$f(x)=a_nx^n+\cdots + a_nx+a_0$
$f(x)^p=(a_nx^n+\cdots + a_1x+a_0)^p=(a_nx^n)^p+\cdots +(a_nx)^p+a_0^p=a_n^p(x^p)^n+\cdots + a_1^p(x^p)+a_0^p=a_n(x^p)^n+\cdots + a_1(x^p)+a_0$
$x^{p^2}-x^p=(x^p-x)^p$ ← Because char = p
$\alpha \in K$ is a root of $(x^p-x)^p\iff\alpha$ is a root of $x^p-x\iff \alpha \in \{\ 0,1,\cdots, p-1\ \}$
$\implies p$ roots
What if $x^{p^2}-x$ ?
At most $p^2$ roots
$K = \Z_p\implies$ only $p$ roots
If field is $|K|=p^2$
We proved in lectures that $\{\ \alpha \in K\mid \alpha ^{p^n}\ \}\subseteq K$ is a subring and a field
If $|K|=p^{even}$ $\implies p^2$ roots
$|K|=p^{odd} \implies p$ roots (Homework #6)
$\Z_p\subseteq K$ $st.\ K<\infin$
$x^{p^2}-1$ in $K$
$x^{p^2}=1$
$\text{ord}{K^x}(x)\mid p^2\implies \text{ord}{K^x}(x)\in \{1,p,p^2\}$
$|K^x|=p^n-1\implies$ The only divisor of $p^2-1$ is 1 $\implies x=1$
Let $F$ be a finite field of characteristic $2$. Prove that there exists $\alpha \in F$ such that $F[x]/\braket{\ x^2+x+\alpha \ }$ is a field.
$F[x]/\braket{\ x^2+x+\alpha\ }\iff x^2+x+\alpha$ is irreducible $\xLeftrightarrow{deg=2} x^2+x+\alpha$ has no roots in $F$
$\exists\ \alpha \in F\ st. \ x^2+x+\alpha \neq 0$
$x^2+x\neq -\alpha$
$g:F\to F$ function not a homomorphism
$g(x)=x^2+x$
So, we want to show: $g$ is not surjective
(Then, $\exists\ \beta\ \in F:\forall \ x\in F, \ x^2+x\neq \beta,\ \text{take } \alpha =-\beta$ and we are done. $x^2+x+\alpha$ would not have a root)
$g: \underbrace{F}_{\text{is finite}}\to F$ ←Pigeon Hole principle
Equivalently, let us show that $g$ is not injective
$g(0_F)=0_F^2+0_F=0_F$
$g(1_F)=1_F^2+1_F=1_F+1_F=0_F$
$x^2+x=0$
If $\text{char }\neq 2$ just $g(0)=g(-1)$
So, G is not surjective which implies that $x^2+x+\alpha$ has no roots in $F$
Let $f(x)=x^5 +x+1$. Is it irreducible over $\Z_2$? Over $\Bbb R$? Over $\Z_7$? Prove your answers
$\Z_2$ - We check whether there are roots of this polynomial over $\Z_2$ by checking $f(\alpha)=0\ \forall\ \alpha \in \Z_2$
$\Z_2=\{\ 0,1\ \}, \implies f(0)=1\neq 0,\ f(1)=3\neq 0$
So, there are no roots.
Now we know that it cannot split into (1)(4), (4)(1)
Only possibilites are (2)(3), (3)(2)
$f(x)=(x^2+b_1x+c_1)(x^3+a_2x^2+b_2x+c_2)$
$=x^5+a_2x^4+b_2x^3+b_1x^4+a_2b_1x^3+b_1b_2x^2+b_1c_2x+c_1x^3+c_1a_2x^2+c_1b_2x+c_1c_2$
$=x^5+(a_2+b_1)x^4+(b_2+a_2b_1+c_1)x^3+(c_2+b_1b_2+c_1a_2)x^2+(b_1c_2+c_1b_2)x+1$
$\implies a_2+b_1=0\implies a_1=-b_1$
$\implies b_2+a_2b_1+c_1=0$
$\implies c_2+b_1b_2+c_1a_2=0$
$\implies b_1c_2+c_1b_2=1\implies c_2=\frac{1}{c_1}$
$=(x^2+b_1x+c_1)(x^3-b_1x^2+b_2x+\frac{1}{c_1})$
$=x^5+(b_2-b_1^2+c_1)x^3+(\frac{1}{c_1}+b_1b_2-b_1c_1)x^2+(\frac{b_1}{c_1}+c_1b_2)x+1$
$\implies b_2=b_1^2-c_1$
$\implies 1+b_1b_2c_1-b_1c_1^2=0$
$\implies b_1+c_1^2b_2=0$
Degree 5, so we check that it has no roots. The only possibilites are $(2)(3)$
If 2 is reducible then we would have a root and there would be a contradiction
So, just check that $x^5+x+1$ is divisible by $x^2+x+1$
Reducible
$\R \$ Reducible because degree is greater than 2 Look up this theorem in the textbook
$\Z_7 \$ Reducible, $x=2$ is a root $\implies$ reducible
First step, multiply the polynomial by $x-1$
$x^6+x^5+x^4+x^3+x^2+x+1=0$ over $F$, $|F|=2^6=64$
$x^7 -1$