The landscape of Ai has been accelerating and this is my table to keep track of the large language models and where they are bing used.
Model | Used Commercially by | Developer | Launch Year | Number of Parameters | Number of Languages Covered | Open Source | On-prem/Private Cloud | Research/Paper |
---|---|---|---|---|---|---|---|---|
GPT-4 | Microsoft CoPilot | OpenAI | 2023 | 170 Trillion | No Only through Microsoft Azure | |||
GPT-3 | Microsoft Bing, ChatGPT | OpenAI | 2020 | 175 billion | +95 natural languages+ 12 code languages | No | No Only through Microsoft Azure | https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf |
BERT | Bard.com, Google ‘HelpMeWrite’ | 2018 | 340 million | 104 languages in multilingual model | Yes | Yes | https://arxiv.org/abs/1810.04805 | |
BLOOM | BigScience | 2022 | 176 billion | 46 natural languages 13 code languages | Yes | Yes | https://huggingface.co/bigscience/bloom | |
NeMo LLM | NVIDIA | 2022 | 530 billion | English only | Yes | Yes | https://www.nvidia.com/en-us/gpu-cloud/nemo-llm-service/ | |
Turing NLG | Microsoft | 2020 | 17 billion | English only | Yes | No | https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/ | |
XLM-RoBERTa | Meta | 2020 | 354 million | 100 natural languages | Yes | Yes | https://arxiv.org/abs/1911.02116 | |
XLNet | Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le | 2020 | 340 million | English only | Yes | Yes | https://arxiv.org/abs/1906.08237 | |
OPT | Meta | 2022 | 175 billion | English only | Yes | Yes | https://arxiv.org/abs/2205.01068 | |
LaMDA | 2021 | 137 billion | English only | Yes | No | https://blog.google/technology/ai/lamda/ | ||
Classify, Generate, Embed | Cohere | 2021 | NA | +100 natural languages | Yes | Yes | https://docs.cohere.ai/docs/the-cohere-platform | |
Luminous | Aleph Alpha | 2022 | NA | English, German, French, Italian and Spanish | No | Yes | https://www.aleph-alpha.com/luminous | |
GLM-130B | Tsinghua University | 2022 | 130 billion | English & Chinese | Yes | Yes | https://keg.cs.tsinghua.edu.cn/glm-130b/posts/glm-130b/#fnref:5 | |
CPM-2 | Beijing Academy of Artificial Intelligence &Tsinghua University | 2021 | 11 billion | English & Chinese | Yes | Yes | https://arxiv.org/pdf/2106.10715.pdf | |
ERNIE 3.0 | Baidu | 2021 | 10 billion | English & Chinese | Yes | Yes | https://arxiv.org/abs/2107.02137 |