Definition:
A subset $I\vartriangleleft R$ of a ring is called an ideal if:
$$ \forall x\in I, r\in R,\\ rx,xr\in I $$
$R$ is not an ideal of itself, it is an “improper ideal”
Examples:
$f:\mathbb{Z}\rightarrow\mathbb{Z}$
$a\mapsto a\pmod n$
$\ker f =\{a\in\mathbb{Z}:a\equiv0\pmod n\}=\{...,-2n, -n,0,n,2n,...\}= n\Bbb{Z}$
$f$ is an ideal
What do ideals of $\mathbb{Z}$ look like?
Any $I\vartriangleleft \mathbb{Z}$ is an additive subgroup of $(\mathbb{Z},+)$ and is cyclic: $m\mathbb{Z}$ for some integer $m$
Let $F$ be a field.
$f:F[x]\rightarrow F$
$f(p(x))=p(0)=a_0+a_1(0)+a_2(0)^2+\cdots+a_n(0)^n=a_0$
Then $f$ is a ring homomoprhism.
$\ker f =\{p(x)\in F[x]:p(x)=a_1x+a_2x^2+\cdots+a_nx^n\}$, the set where the leading coefficient is equal to 0.
Given $\alpha\in F,$
$f:F[x]\rightarrow F$
$f(p(x))=p(\alpha)$
If $\alpha=1,$
$f(p(x))=\sum_{k=0}^na_k$, the sum of all coefficients.
$\ker f=\{p(x)\in F[x]:p(\alpha)=0\}$
$f:\mathbb{Z}[i]\rightarrow\mathbb{Z}_5$
$f(a+bi)=(a+2b)\pmod 5$
Exercise: Verify $f$ is a ring homomorphism. Is there a homomorphism $g:\mathbb{Z}[i]\rightarrow\mathbb{Z}_7$? (more difficu
$\ker f=\{a+bi:a,b\in\mathbb{Z}:a+2b\equiv0\pmod 5\}$ (equivalently $a\equiv3b\pmod 5)$
For example, $4+3i\in\ker f$
Suppose $F$ is a field.
What are the ideals of $F$?
$\{0_F\}\vartriangleleft F$
Let $I\vartriangleleft F$ be an ideal of a field.
If $0\not=x\in I.$ Then, $x^{-1}\in I$.
But then $x^{-1}x=1\in I$ which is a contradiction.
Thus, $\{0_F\}$ is the only ideal of a field.
Corollary:
If $I\vartriangleleft R$, then $I$ contains no units.
Exercise:
If $F$ is a field, then the only ideal of $M_n(F) \text{ is } \{0\}$
For the rest of the lecture, $R$ is a commutative ring.
(some of this can be found in section 5.4 of the textbook)
Definition:
Let $S\subseteq R$ be a subset.
The ideal generated by $S$, denoted $\langle\ S\ \rangle \vartriangleleft R,$ is
$$ \boxed{\langle\ S\ \rangle = \left\{ \sum_{i=1}^m r_is_i:r_i\in R,s_i \in S\right\}} $$
Exercise: