📖 Table of Contents
🔑 Key
Blue - Definitions
Red - Important Remark / Forumla
Green - Exercise for reader
✍️ Acronyms
WTS - Want To Show
RHS - Right Hand Side
LHS - Left Hand Side
St. - Such that
FTA - Fundamental Theorem of Algebra
📚 Review
Monoid
A monoid has two properties,
- ${\bf{Associative}}: x\cdot (y\cdot z) = (x\cdot y)\cdot z$
- ${\bf{Identity / Neutral\ Element}}: \exists\ e \in G: x\cdot e\ = e\cdot x \ =\ x$
Adding a third property
- ${\bf{Inverse}}: \forall\ x \in G\ \exists \ y \in G:\ x\cdot y = y\cdot x =\ e$
Groups
A Group is a Monoid with Inverses
Abelian Group
A group with Communativity is an Abelian Group
- ${\bf{Commutativity}}: \forall x,y\in G: x\cdot y = y\cdot x$
Examples:
- $(\Z, +)$ - Abelian Group
- $(\Z, \cdot)$ - Monoid (Abelian Monoid because $n\cdot m = m \cdot n$)
- $(\Z_n, +_{mod(n)})$ = {0, 1, ..., n - 1} - Abelian Group
- $(\Z_n, \cdot_{mod(n)})$ - Monoid
- $(\R, +)$ - Abelian Group